Intellijel KORGASMATRON II
Illustrated supplement

by Demonam
01... LP2 / 2-pole low-pass filter
02... LP1 / 1-pole low-pass filter
03... BP1 / 1-pole band-pass filter
04... HP1 / 1-pole high-pass filter
05... HP2 / 2-pole high-pass filter
06... BR1 / 1-pole band-reject filter
07... Dual 1V/Oct sine oscillator
08... Normalled inputs
09... SERIAL configuration
10... PARALLEL configuration
11... XFADE response - 01
12... XFADE response - 02
13... State-variable stereo filter
14... State-variable stereo filter - VC pan patch
15... 1-pole BAND-PASS filter patch
16... 1-pole BAND-PASS filter curves
17... 2-pole BAND-PASS filter patch
18... 2-pole BAND-PASS filter curves
19... 1-pole BAND-REJECT filter patch
20... 1-pole BAND-REJECT filter curves
21... 2-pole BAND-REJECT filter patch
22... 2-pole BAND-REJECT filter curves
23... Asymmetrical BAND-PASS filter patch
24... Asymmetrical BAND-PASS filter curves
25... Asymmetrical BAND-REJECT filter patch
26... Asymmetrical BAND-REJECT filter curves
27... Dual BAND-PASS filter patch
28... Dual BAND-PASS filter curves
29... Dual BAND-REJECT filter patch
30... Dual BAND-REJECT filter curves
31... (BP1 + LP1) filter patch
32... (BP1 + LP1) filter curves
33... (BP1 + LP2) filter patch
34... (BP1 + LP2) filter curves
35... (BP1 + HP1) filter patch
36... (BP1 + HP1) filter curves
37... (BP1 + HP2) filter patch
38... (BP1 + HP2) filter curves
39... (BR1 + LP1) filter patch
40... (BR1 + LP1) filter curves
41... (BR1 + LP2) filter patch
42... (BR1 + LP2) filter curves
43... (BR1 + HP1) filter patch
44... (BR1 + HP1) filter curves
45... (BR1 + HP2) filter patch
46... (BR1 + HP2) filter curves
47... Heavy dub bass
48... Ping!
49... Weird filter
50... Spacewave sound
51... Feedback loop
52... Cross-FM
53... Feedback FM loop
54... Drone zone 1
55... Expander - Overview
56... Expander - VC Q filtering
57... Expander - Quad filter
58... Expander - Quad filter feedback loop
59... Expander - Cross-Q modulation
60... Expander - Feedback cross-Q modulation
61... Expander - Drone zone 2
Input attenuator IN A (and/or B) controls the level into the filter A (and/or B).

For classic tone keep this below 12 o’clock.

Higher gain will suppress the resonance of the filter and change its tone.

The combination of IN A level, Q, and Q Drive knobs can alter the tone of the filter dramatically from sweet to scathing - experiment!
Input attenuator IN A (and/or B) controls the level into the filter A (and/or B).

For classic tone keep this below 12 o’clock.

Higher gain will suppress the resonance of the filter and change its tone.

The combination of IN A level, Q and Q Drive knobs can alter the tone of the filter dramatically from sweet to scathing - experiment!
Input attenuator IN A (and/or B) controls the level into the filter A (and/or B).

For classic tone keep this below 12 o'clock.

Higher gain will suppress the resonance of the filter and change its tone.

The combination of IN A level, Q and Q Drive knobs can alter the tone of the filter dramatically from sweet to scathing - experiment!
Input attenuator IN A (and/or B) controls the level into the filter A (and/or B).

For classic tone keep this below 12 o’clock.

Higher gain will suppress the resonance of the filter and change its tone.

The combination of IN A level, Q and Q Drive knobs can alter the tone of the filter dramatically from sweet to scathing - experiment!
HP2 / 2-pole high-pass filter

Input attenuator IN A (and/or B) controls the level into the filter A (and/or B).

For classic tone keep this below 12 o’clock.

Higher gain will suppress the resonance of the filter and change its tone.

The combination of IN A level, Q and Q Drive knobs can alter the tone of the filter dramatically from sweet to scathing - experiment!
Input attenuator IN A (and/or B) controls the level into the filter A (and/or B).

For classic tone keep this below 12 o’clock.

Higher gain will suppress the resonance of the filter and change its tone.

The combination of IN A level, Q and Q Drive knobs can alter the tone of the filter dramatically from sweet to scathing - experiment!
Dual 1V/Oct sine oscillator

- Filter A coarse frequency set
- Make filter A self-oscillate
- Filter A kind of fine frequency set
- Filter B coarse frequency set
- Make filter B self-oscillate
- Filter B kind of fine frequency set

Filter A sine out

1V/Oct quantized CV

Filter B sine out

Sine A and B mix out in PARALLEL configuration
FILTER A:

IN A: Signal input to filter A. Patch a audio signal here to be filtered. The knob IN A attenuates this signal. This is normalled to the IN B input of filter B.

1V/Oct A: CV input for filter frequency calibrated for 1V/oct standard. This is normalled to the 1V/Oct CV input of filter B.

FILTER B:

IN B: Signal input to filter B. Patch a audio signal here to be filtered. The knob IN B attenuates this signal. This is a switching jack, inserting a plug here will break the normal from IN A.

FM2 B: CV input to VCF B filter cutoff, attenuated with inversion by FM2 B knob. This is a switching jack, inserting a plug here will break the normal from FM2 A.

1V/Oct B: CV input for filter frequency calibrated for 1V/oct standard. This is a switching jack, inserting a plug here will break the normal from 1V/Oct A.

Advice: If you are using the Korgasmatron II in SERIAL configuration inserting a plug into IN B jack will break the internal routing from filter A which may cause confusion.
SERIAL configuration

Advice: If you are using the Korgasmatron II in SERIAL configuration inserting a plug into IN B jack will break the internal routing from filter A which may cause confusion.

XFADE position

attenuator for XFADE input

XFADE signal input

filter A out

signal to be filtered

XFADE

IN filter B

OUT B

signal to be filtered

filter A OUT

XFADE SERIAL A>B out

MIX out
PARALLEL configuration

Use MIX output if the Korgasmatron II is in PARALLEL configuration and you want to mix the filters together to one output.

- **signal(s) to be filtered**
- **filter A OUT**
- **filter B OUT**
- **XFADE**
- **MIX out**

Diagram:
- XFADE position
- attenuator for XFADE input
- XFADE signal input
- filter A out
- filter B out
- signal(s) to be filtered
XFADE response - 01

<table>
<thead>
<tr>
<th>UNIPOLAR signal input [0V/+...V] ADSR illustration</th>
<th>BIPOLAR signal input [-...V/+...V] triangle LFO illustration</th>
<th>MANUAL set (no input) [CCW/CW] knob illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XFADE response - 02

<table>
<thead>
<tr>
<th>UNIPOLAR signal input</th>
<th>BIPOLAR signal input</th>
<th>MANUAL set (no input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0V/+...V] ADSR illustration</td>
<td>[-...V/+...V] triangle LFO illustration</td>
<td>[CCW/CW] knob illustration</td>
</tr>
</tbody>
</table>

- **UNIPOLAR signal input**
 - [0V/+...V] ADSR illustration
 - Diagram showing a graph with labels: `+...V`, `0V`, `-...V`.

- **BIPOLAR signal input**
 - [-...V/+...V] triangle LFO illustration
 - Diagram showing a graph with labels: `+...V`, `0V`, `-...V`.

- **MANUAL set (no input)**
 - [CCW/CW] knob illustration
 - Diagram showing a graph with labels: `CW`, `noon`, `CCW`.

XFADE DIR.

- A → B
- B → A

XFADE

- A
- B

1:1

- A → B
- B → A

CW

- Noon
- CCW
Set the Korgasmatron in PARALLEL configuration. Use same LP-BP-HP-BR's switch position for A & B filters to set type of stereo filter.

2-pole low-pass stereo filter for this illustration.

- Set stereo filter type same position as filter B
- Filter A LEFT out
- Filter B RIGHT out

LEFT signal IN

RIGHT signal IN
State-variable stereo filter - VC pan patch

Requires 2 bipolar VCAs.

Set gain of VCA to +1 and VCA 2 to -1.

In this patch, a positive offset patched at VCA 1 CV in & VCA 2 CV in down the amplitude of RIGHT out, while up amplitude of LEFT out.

A negative offset patched at VCA 1 CV in & VCA 2 CV in up the amplitude of RIGHT out, while down amplitude of LEFT out.

Use same LP-BP-HP-BR's switch position for A & B filters to set type of stereo filter.

Low-pass stereo filter for this illustration.

LEFT signal

same position
as filter B

set stereo filter type

RIGHT signal

CV signal

same CV

IN

filter A out

bipolar VCA 1
in / gain +1

filter B out

bipolar VCA 2
in / gain -1

IN

OUT A

OUT B

OUT 1V/OCT

MIX

IN A

IN B

CUTOFF

CLIP

HARD

Q

FM1

FM2

FM1

FM2

FM2

FM1

HP1

LP1

BR1

LP2

LP2

LP1

BP1

Q-DRIVE

Q-DRIVE

A-B

B-A

A

B

XFADE

XFADE DIR.

VCF A

VCF B

VCF A

VCF B

XFADE

set stereo filter type

same position
as filter B
1-pole BAND-PASS filter patch

Monitoring band-pass filter at OUT B in SERIAL configuration.

band-pass CUTOFF shift: Manually set A & B cutoff, with A low-pass cutoff always > B high-pass cutoff. Keep same relative knobs positions for cutoff shift.

Input
- Same CV signal in A & B FM 1 with same attenuation levels.
- Use FM 2 normalled input and set FM 2 B as FM 2 A.
- Different CV signals in A & B FM 1 with different attenuation levels.
- Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See band-pass filter chart for details on OUT B filter curves.
1-pole BAND-PASS filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 1-pole FILTER cutoff</th>
<th>HP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td></td>
<td>![MODE B](MODE B.png)</td>
</tr>
<tr>
<td>A - LOW-PASS 1-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP1 MODE</td>
<td>![filter BANDWIDTH](filter BANDWIDTH.png)</td>
<td>![filter CUTOFF SHIFT](filter CUTOFF SHIFT.png)</td>
</tr>
</tbody>
</table>
2-pole BAND-PASS filter patch

CUTOFF/BANDWIDTH set with A low-pass always > B high-pass

CV CUTOFF/BANDWIDTH

Monitoring band-pass filter at OUT B in SERIAL configuration.

band-pass CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

band-pass BANDWIDTH set:
Manually set A & B cutoff, with A low-pass cutoff always > B high-pass cutoff. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See band-pass filter chart for details on OUT B filter curves.
2-pole BAND-PASS filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 2-pole FILTER cutoff</th>
<th>HP2 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP2 MODE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1-pole BAND-REJECT filter patch

Monitoring band-reject filter at MIX in PARALLEL configuration with 1:1 XFADE.

band-reject CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

band-reject BANDWIDTH set:
Manually set A & B cutoff, with A low-pass cutoff always < B high-pass cutoff. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See band-reject filter chart for details on MIX out filter curves.
1-pole BAND-REJECT filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 1-pole FILTER cutoff</th>
<th>HP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td>!MODE B</td>
</tr>
<tr>
<td>A XFADE B</td>
<td></td>
<td>!LP1 LP2 HP2 BP1 BR1</td>
</tr>
<tr>
<td>CLIP HARD CUTOFF</td>
<td>CLIP HARD CUTOFF</td>
<td>LP1 HP1 HP2 BP1 BR1</td>
</tr>
<tr>
<td>A LOW-PASS 1-pole FILTER cutoff</td>
<td>out</td>
<td>!filter BANDWIDTH</td>
</tr>
<tr>
<td>CLIP HARD CUTOFF</td>
<td>freq.</td>
<td>!filter CUTOFF SHIFT</td>
</tr>
<tr>
<td>A</td>
<td>out</td>
<td>freq.</td>
</tr>
<tr>
<td>A</td>
<td>out</td>
<td>freq.</td>
</tr>
<tr>
<td>A</td>
<td>out</td>
<td>freq.</td>
</tr>
</tbody>
</table>

The diagram illustrates the filter curves for different modes and cutoffs, showing how the output changes in response to the adjustment of the filter cutoff and bandwidth. The PARALLEL - 1:1 MIX OUT and LOW-PASS 1-pole FILTER cutoff modes are highlighted, with the HP1 MODE being adjustable between MODE A and MODE B.
Monitoring band-reject filter at **MIX** in **PARALLEL** configuration with 1:1 **XFADE**.

band-reject CUTOFF shift:
Manually set A & B cutoff, with **A low-pass cutoff always < B high-pass cutoff**. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

band-reject BANDWIDTH set:
Manually set A & B cutoff, with **A low-pass cutoff always < B high-pass cutoff**. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See band-reject filter chart for details on MIX out filter curves.
<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 2-pole FILTER cutoff</th>
<th>HP2 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td>MODE B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A - LOW-PASS 2-pole FILTER cutoff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LP2 MODE</td>
<td>filter CUTOFF SHIFT</td>
</tr>
</tbody>
</table>

- **MIX**
 - PARALLEL - 1:1 MIX OUT
 - A - LOW-PASS 2-pole FILTER cutoff
 - LP2 MODE

- **B - HIGH-PASS 2-pole FILTER cutoff**
 - CLIP HARD
 - CUTOFF

- **HP2 MODE**
 - MODE B
 - LP1 HP1 HP2 BR1

- **Diagram**
 - Filter BANDWIDTH
 - Filter CUTOFF SHIFT
Asymmetrical BAND-PASS filter patch

Monitoring band-pass filter at OUT B in SERIAL configuration.

band-pass CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalied input and set FM 2 B as FM 2 A.

band-pass BANDWIDTH set:
Manually set A & B cutoff, with A low-pass cutoff always > B high-pass cutoff. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalied input and set FM 2 B as inverted of FM 2 A.

See asymmetrical band-pass filter chart for details on OUT B filter curves.
Asymmetrical BAND-PASS Filter Curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 2-pole FILTER Cutoff</th>
<th>HP2 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIX Modes

- **SERIAL - B OUT**
 - Clip Hard Cutoff

B - HIGH-PASS 2-pole FILTER Cutoff

- **CLIP HARD CUTOFF**

HP2 MODE

- **BP1 HP1 LP1 HP2 BR1 MODE B**

FILTER CURVES

- **A LOW-PASS 1-pole FILTER cutoff**
 - Clip Hard Cutoff

- **LP1 MODE**
 - LP1 HP1 LP2 BR1 MODE A

滤波带宽

滤波截止位移
Asymmetrical BAND-REJECT filter patch

Monitoring band-reject filter at **MIX** in **PARALLEL** configuration with 1:1 **XFADE**.

band-reject CUTOFF shift:
Manually set A & B cutoff, with **A low-pass cutoff always < B high-pass cutoff**. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

band-reject BANDWIDTH set:
Manually set A & B cutoff, with **A low-pass cutoff always < B high-pass cutoff**. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See asymmetrical band-reject filter chart for details on **MIX out filter curves**.

CUTOFF/BANDWIDTH

- Set with **A low-pass always < B high-pass**

CV CUTOFF/BANDWIDTH

CV CUTOFF/BANDWIDTH

- Signal to be filtered
- Asymmetrical band-reject filter out
Asymmetrical BAND-REJECT filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 1-pole FILTER cutoff</th>
<th>HP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td>CUTOFF</td>
<td>CLIP HARD</td>
</tr>
<tr>
<td>LOW-PASS 2-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td>CUTOFF</td>
<td>CLIP HARD</td>
</tr>
<tr>
<td>LOW-PASS 2-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td>CUTOFF</td>
<td>CLIP HARD</td>
</tr>
<tr>
<td>LOW-PASS 2-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td>CUTOFF</td>
<td>CLIP HARD</td>
</tr>
<tr>
<td>LOW-PASS 2-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td>CUTOFF</td>
<td>CLIP HARD</td>
</tr>
</tbody>
</table>

filter BANDWIDTH

filter CUTOFF SHIFT
Dual BAND-PASS filter patch

Monitoring dual band-pass filter at MIX in PARALLEL configuration with 1:1 XFADE.

dual band-pass CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

dual band-pass BANDWIDTH set:

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See dual band-pass filter chart for details on MIX out filter curves.
Dual BAND-PASS filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - BAND-PASS 1-pole FILTER cutoff</th>
<th>BP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A XFADE B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A - BAND-PASS 1-pole FILTER cutoff

- **CLIP HARD**
- **CUTOFF**

BP1 MODE

- **Mode A**
- **LP1**
- **HP1**
- **HP2**
- **LP2**
- **BR1**

Filter **BANDWIDTH**

Filter **CUTOFF SHIFT**
Monitoring band-pass filter at OUT B in SERIAL configuration.

dual band-reject CUTOFF shift:
OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.
OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

dual band-reject BANDWIDTH set:
Manually set A & B cutoff, with A band-reject cutoff always ≠ B band-reject cutoff. Keep different relative knobs positions for bandwidth set.
OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.
OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See dual band-reject filter chart for details on OUT B filter curves.
Dual BAND-REJECT Filter Curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - BAND-REJECT 1-pole FILTER cutoff</th>
<th>BR1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BR1 Mode Options:
- **Mode A**: LP1, HP1, HP2, BR1
- **Mode B**: LP1, HP1, HP2, BR1

- Filter BANDWIDTH
- Filter CUTOFF SHIFT
Monitoring (BP1 + LP1) filter at MIX in PARALLEL configuration with 1:1 XFADE.

(BP1 + LP1) CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BP1 + LP1) BANDWIDTH set:

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BP1 + LP1) filter chart for details on MIX out filter curves.
(BP1 + LP1) filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - BAND-PASS 1-pole FILTER cutoff</th>
<th>BP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A - LOW-PASS 1-pole FILTER cutoff

- CLIP HARD
- CUTOFF

B - BAND-PASS 1-pole FILTER cutoff

- CLIP HARD
- CUTOFF

LP1 MODE

- MODE A

- filter BANDWIDTH

- filter CUTOFF SHIFT

32
Monitoring (BP1 + LP2) filter at MIX in PARALLEL configuration with 1:1 XFADE.

(BP1 + LP2) CUTOFF shift:
Manually set A & B cutoff, with **A low-pass cutoff always < B band-pass cutoff**. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BP1 + LP2) BANDWIDTH set:
Manually set A & B cutoff, with **A low-pass cutoff always < B band-pass cutoff**. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BP1 + LP2) filter chart for details on MIX out filter curves.

CV CUTOFF/BANDWIDTH
- Set with **A low-pass always < B band-pass**

Signal to be filtered

(BP1 + LP2) out
(BP1 + LP2) filter curves

MIX

- PARALLEL - 1:1 MIX OUT
- A - LOW-PASS 2-pole FILTER cutoff
- B - BAND-PASS 1-pole FILTER cutoff

BP1 MODE

- MODE B

LP2 MODE

- MODE A

Legend

- Filter BANDWIDTH
- Filter CUTOFF SHIFT

- Out freq.

- A
- B

- CLIP HARD
- CUT OFF

- XFADE

- BP1 HP1
- HP2
- BR1
Monitoring (BP1 + HP1) filter at **MIX** in **PARALLEL** configuration with 1:1 **XFADE**.

BP1 + HP1 CUTOFF shift:
Manually set A & B cutoff, with **A band-pass cutoff always < B high-pass cutoff**. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

BP1 + HP1 BANDWIDTH set:
Manually set A & B cutoff, with **A band-pass cutoff always < B high-pass cutoff**. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BP1 + HP1) filter chart for details on MIX out filter curves.
(BP1 + HP1) Filter Curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 1-pole FILTER cutoff</th>
<th>HP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP1 MODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND-PASS 1-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - BAND-PASS 1-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP1 MODE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filter Curves

- **A** - Band-pass 1-pole filter cutoff
- **B** - High-pass 1-pole filter cutoff

Legend

- **CUTOFF**
- **CLIP HARD**
- **OUT FREQ.**
- **LP1**, **LP2**, **HP1**, **HP2**, **BR1**
- **MODE A**, **MODE B**

Bandwidth and Cutoff Shift

- Filter bandwidth
- Filter cutoff shift
CUTOFF/BANDWIDTH set with A band-pass always < B high-pass

CV CUTOFF/BANDWIDTH

CV CUTOFF/BANDWIDTH

signal to be filtered

(BP1 + HP1) out

(BP1 + HP2) filter patch

Monitoring (BP1 + HP2) filter at MIX in PARALLEL configuration with 1:1 XFADE.

(BP1 + HP2) CUTOFF shift:
Manually set A & B cutoff, with A band-pass cutoff always < B high-pass cutoff. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BP1 + HP2) BANDWIDTH set:
Manually set A & B cutoff, with A band-pass cutoff always < B high-pass cutoff. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BP1 + HP2) filter chart for details on MIX out filter curves.
(BP1 + HP2) filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - HIGH-PASS 1-pole FILTER cutoff</th>
<th>HP2 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLEL - 1:1 MIX OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTOFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTOFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTOFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIP HARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTOFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BP1 MODE
- **MODE A**
- **filter BANDWIDTH**
- **filter CUTOFF SHIFT**

HP2 MODE
- **MODE B**
Monitoring (BR1 + LP1) filter at OUT B in SERIAL configuration.

(BR1 + LP1) CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BR1 + LP1) BANDWIDTH set:

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BR1 + LP1) filter chart for details on OUT B filter curves.
(BR1 + LP1) filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - LOW-PASS 1-pole FILTER cutoff</th>
<th>LP1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-BAND-REJECT 1-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- filter BANDWIDTH
- filter CUTOFF SHIFT
Monitoring (BR1 + LP2) filter at OUT B in SERIAL configuration.

(BR1 + LP2) CUTOFF shift:

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BR1 + LP2) BANDWIDTH set:

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BR1 + LP2) filter chart for details on OUT B filter curves.
BR1 + LP2) filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - LOW-PASS 2-pole FILTER cutoff</th>
<th>LP2 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - BAND-REJECT 1-pole FILTER cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR1 MODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Filter Bandwidth**
- **Filter Cutoff Shift**

![Image](image16.png)
Monitoring (BR1 + HP1) filter at OUT B in SERIAL configuration.

(BR1 + HP1) CUTOFF shift:
Manually set A & B cutoff, with A high-pass cutoff always < B band-reject cutoff. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BR1 + HP1) BANDWIDTH set:
Manually set A & B cutoff, with A high-pass cutoff always < B band-reject cutoff. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BR1 + HP1) filter chart for details on OUT B filter curves.
(BR1 + HP1) filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - BAND-REJECT 1-pole FILTER cutoff</th>
<th>BR1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A - HIGH-PASS 1-pole FILTER cutoff

B - BAND-REJECT 1-pole FILTER cutoff

BR1 MODE
Monitoring (BR1 + HP2) filter at OUT B in SERIAL configuration.

(BR1 + HP2) CUTOFF shift:
Manually set A & B cutoff, with A high-pass cutoff always < B band-reject cutoff. Keep same relative knobs position for cutoff shift.

OR/AND
Input same CV signal in A & B FM 1 with same attenuation levels.

OR/AND
Use FM 2 normalled input and set FM 2 B as FM 2 A.

(BR1 + HP2) BANDWIDTH set:
Manually set A & B cutoff, with A high-pass cutoff always < B band-reject cutoff. Keep different relative knobs positions for bandwidth set.

OR/AND
Input different CV signals in A & B FM 1 with different attenuation level.

OR/AND
Use FM 2 normalled input and set FM 2 B as inverted of FM 2 A.

See (BR1 + HP2) filter chart for details on OUT B filter curves.
(BR1 + HP2) filter curves

<table>
<thead>
<tr>
<th>MIX</th>
<th>B - BAND-REJECT 1-pole FILTER cutoff</th>
<th>BR1 MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL - B OUT</td>
<td>CUTOFF</td>
<td>MODE B</td>
</tr>
<tr>
<td>A - VCF A</td>
<td>B - CLIP HARD</td>
<td></td>
</tr>
<tr>
<td>VCF B</td>
<td>CUTOFF</td>
<td></td>
</tr>
</tbody>
</table>

| A - CLIP HARD | CUTOFF | |
| CUTOFF | | |

| A - HIGH-PASS 2-pole FILTER cutoff | CUTOFF | |
| CUTOFF | | |

| HP2 MODE | | filter BANDWIDTH |
| | | filter CUTOFF SHIFT |

| HP2 MODE | | filter BANDWIDTH |
| | | filter CUTOFF SHIFT |
Heavy dub bass

- Set bass frequency
- Make filter A self-oscillate
- Set past 12 o'clock for heavy bass
- Filter A bass out
- Bassline CV
- Set bass frequency
- Make filter A self-oscillate
- Set past 12 o'clock for heavy bass
- Filter A bass out
- Bassline CV
Ping!

set ping frequency

set just under filter A self-oscillation

filter A ping out

short A/D or trigger in A
Weird filter

Advice: If you are using the Korgasmatron II in SERIAL configuration inserting a plug into IN B jack will break the internal routing from filter A which may cause confusion.
set filter A coarse frequency

make filter A self-oscillate

XFADE input attenuator

sub-audio bipolar XFADE signal input

1V/Oct quantized CV

spacewave sound out

set filter B coarse frequency slightly detuned with filter A

make filter B self-oscillate
Feedback loop

Monitoring MIX output in SERIAL configuration.

make filter A self-oscillate

feedback loop out
Cross-FM

Monitoring MIX output in PARALLEL configuration.

- Make filter A self-oscillate
- Make filter B self-oscillate

Cross-FM out

[Diagram of Cross-FM module with controls labeled and arrows indicating connections and actions]
Feedback cross-FM

- Make filter A self-oscillate
- Make filter B self-oscillate

Monitoring MIX output in SERIAL configuration.

Feedback cross-FM out
Monitoring OUT B or MIX output in SERIAL configuration.

Set filter B FM2 opposite to filter A FM2.

Experiment with different cutoff, Q and Q-DRIVE values for both filters.

slow bipolar FM2 signal input

triangle in

serial MIX out

drone zone out

OUT B for +V FM2 input CV:

OUT B for -V FM2 input CV:
Expander - Overview

- **set AUX MOD A**
- **AUX IN A level**
- **Q CV A level**
- **set AUX MOD B**
- **AUX IN B level**
- **Q CV B level**
A signal in AUX A signal in (AUX A + A) out

AUX IN A level

AUX IN B level

AUX A signal in

AUX B signal in

(AUX B + B) out

(AUX A + A) : (AUX B + B) out

B signal in

A signal in

out
Expander - Quad filter feedback loop

Monitoring MIX output in SERIAL configuration.

AUX IN A level

AUX IN B level

make filter A self-oscillate

feedback loop out
Expander - Cross-Q modulation

Q CV A level

Q CV B level

Monitoring MIX output in PARALLEL configuration.

make filters A & B self-oscillate

cross-Q out
Expander - Drone zone 2

Monitoring OUT B or MIX output in SERIAL configuration.

Set filter B FM2 opposite to filter A FM2. Experiment with different cutoff, Q and Q-DRIVE values for both filters.

- AUX IN A level
- AUX IN B level

AUX MODE A

AUX MODE B

AUX IN A

AUX IN B

Q CV A

Q CV B

OUT A

OUT B

XFADE

XFADE DIR.

SERIAL

MIX

OUT B

B OUT:

freq.

B OUT for +V FM2 input CV:

freq.

B OUT for -V FM2 input CV:

freq.

triangle in

slow bipolar FM2 signal input

serial MIX out

drone zone out